Fabrication and Mechanical Characterisation of Titanium Lattices with Graded Porosity
نویسندگان
چکیده
Electron Beam Melting (EBM) is an Additive Manufacturing technique which can be used to fabricate complex structures from alloys such as Ti6Al4V, for example for orthopaedic applications. Here we describe the use of EBM for the fabrication of a novel Ti6Al4V structure of a regular diamond lattice incorporating graded porosity, achieved via changes in the strut cross section thickness. Scanning Electron Microscopy and micro computed tomography analysis confirmed that generally EBM reproduced the CAD design of the lattice well, although at smaller strut sizes the fabricated lattice produced thicker struts than the model. Mechanical characterisation of the lattice in uniaxial compression showed that its behaviour under compression along the direction of gradation can be predicted to good accuracy with a simple rule of mixtures approach, knowing the properties and the behaviour of its constituent layers.
منابع مشابه
Bending, Buckling and Vibration of a Functionally Graded Porous Beam Using Finite Elements
This study presents the effect of porosity on mechanical behaviors of a power distribution functionally graded beam. The Euler-Bernoulli beam is assumed to describe the kinematic relations and constitutive equations. Because of technical problems, particle size shapes and micro-voids are created during the fabrication which should be taken into consideration. Two porosity models are proposed. T...
متن کاملTHE EFFECT OF NANO BIOGLASS ON THE FABRICATION OF POROUS TITANIUM SCAFFOLDS
In this study, porous titanium composites containing 5, 10 and 15 wt. % nanobioglass were fabricated by space holder sintering process. The pore morphology and phase constituents of the porous samples were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The mechanical properties were determined by compression test. The porosity of the sintered samples show...
متن کاملMicrowave-assisted fabrication of titanium implants with controlled surface topography for rapid bone healing.
Morphological surface modifications have been reported to enhance the performance of biomedical implants. However, current methods of introducing graded porosity involves postprocessing techniques that lead to formation of microcracks, delamination, loss of fatigue strength, and, overall, poor mechanical properties. To address these issues, we developed a microwave sintering procedure whereby p...
متن کاملExperimental design applied to fabrication of PSf membranes via NIPS method Part1: Influential parameters on membrane porosity and mechanical strength
متن کامل
Fabrication of Titanium-Niobium-Zirconium-Tantalium Alloy (TNZT) Bioimplant Components with Controllable Porosity by Spark Plasma Sintering
Spark Plasma Sintering (SPS) is used to fabricate Titanium-Niobium-Zirconium-Tantalum alloy (TNZT) powder-based bioimplant components with controllable porosity. The developed densification maps show the effects of final SPS temperature, pressure, holding time, and initial particle size on final sample relative density. Correlations between the final sample density and mechanical properties of ...
متن کامل